
Reinforcement learning for 
microarchitectural security: 
cache timing channel, speculative 
execution, and defense
Mulong Luo and Mohit Tiwari
The University of Texas at Austin
mulong@utexas.edu

HASP workshop 2024

Nov 2, 2024

1



Executive Summary

• Microarchitectural security problems pose risks 
for information security in distributed systems

• Microarchitectural security analysis is laborious 
and error-prone 

• Reinforcement learning is a useful tool that can 
achieve super-human performance

• We use reinforcement learning to address a 
variety of microarchitectural security problems

2

Agent

Environment

RL learning algorithms

Speculative 

execution contract 

environment 

C
a
c
h
e

Cache timing attack 

environment

Cache partition 

environment

C
a
c
h
e

Attack detection 

environment



Outline

• Microarchitectural attacks and defenses 

• RL methods

• Case studies

• Conclusions

3



Microarchitectural Attacks

• Adversaries exploit the microarchitecture
vulnerabilities in microprocessors
• steal information

• damage the information integrity

• makes the processor unavailable

• Examples:
• Cache timing channel attacks

• Speculative execution attacks

• Challenges for hardware:
• Design time evaluation

• Run time detection/defense

4

OOO architecture

Meltdown/Spectre



• Mechanism
• sharing of caches by different processes

• infer secret by observing cache timing 

• Advantages
• attacker is just a program, no physical access

• does not violate any OS-level access control

• Leak important assets
• cryptographic keys

• Container/browser isolation

• building blocks for Spectre/Meltdown

Cache-Timing Attack

Victim container
Attacker 

container

Core 

L1

Core 

L1

Core 

L1

Core 

L1

Shared LLC

Container Isolation

P2

P1

Processor 

Cache

Process 2

Process 1

h = array[secret*4096]; 



Prime+Probe Attacks

• P1 and P2 have different address space

set

0
1
2

509
510
511

P1 fills the 

cache
P2 reads 

an array

P1 reads its 

data again

Slow (miss)

Fast (hit)
Fast (hit)

Fast (hit)
Fast (hit)
Fast (hit)



Flush+Reload Attacks

• P1 and P2 share the same address space

set

0
1
2

509
510
511

P1 flushes 

the cache
P2 reads 

an array

P1 reads its 

data again

Fast (hit)

Slow (miss)
Slow (miss)
Slow (miss)

Slow (miss)



Speculative Execution Attacks

• Speculative execution may access secret 
by passing the domain isolation

• Speculative execution does not change
architectural states （represented on
contract traces, CTrace)

• Speculative execution changes 
microarchitecture states (represented on
Hardware traces, Htrace)



Secure Design Challenges

• System is too complex
• laptop processors have ~ 20,000,000,000 transistors

• Undefined system behavior
• timing of a memory read is unspecified

• speculative execution that are not committed

• New architecture designs and optimizations 
create new vulnerabilities
• E.g., the prefetcher in Apple Silicon

9

A microprocessor

Meltdown/SpectreRL’s superhuman performance is a useful tool for addressing these issues.



Microarchitectural Defenses

• Detection and response
• Determine whether attacks exist at run time and response correspondingly

• Isolation
• Separate different domains, eliminate interference

• Randomization
• Randomize the actual interference, making it hard to guess the secret based on 

interference

10



Detection

• Example: Cyclone detector for cache timing attacks

• Cyclic Interference is a robust feature
• Opportunity: detect attacks as anomalous cyclic interference

11Harris, Austin, et al. "Cyclone: Detecting contention-based cache information leaks through cyclic interference."  MICRO 2019.



Isolation

12

• Static isolation: eliminate the interference
• Inflexible to the workload performance needs

• Dynamic isolation: SecDCP
• Adjustable to performance needs of the applications

• Potential leakage

Shared cache Shared cache
L: 2 cache ways
H: 2 cache ways

L: 3 cache ways
H: 1 cache way

Wang, Yao, et al. "SecDCP: secure dynamic cache partitioning for efficient timing channel protection." DAC, 2016.



Randomization

• Forms
• Static randomization

• Dynamic randomization

• Implementation
• Table-based

• Cipher-based

13

ScatterCache

1. Werner, Mario, et al. "{ScatterCache}: thwarting cache attacks via cache set randomization." 28th USENIX 

Security Symposium (USENIX Security 19). 2019.

2. Qureshi, Moinuddin K. "CEASER: Mitigating conflict-based cache attacks via encrypted-address and 

remapping." 2018 MICRO 2019.

CEASER



Runtime Defense Challenges

• Adaptive attackers
• Attackers that dynamically adapts to existing (public)

defense/detect mechanisms

• Unseen attackers
• Attackers whose attack strategies are unknown

14

Advanced RLs can be used to address these attacker challenges.



Outline

• Microarchitectural attacks 

• RL methods
• Single-agent RL

• Multi-agent RL

• Meta RL

• Case studies

• Conclusions

15



Reinforcement Learning (RL)

16

Agent

Environment

Action 𝑎

State 𝑠

Reward 𝑟



RL for Games

Big Success in Games

DoTA 2 StarCraft II

Go Chess Shogi Poker

(courtesy of Dr. Yuandong Tian)

https://commons.wikimedia.org/wiki/File:Chess_king.jpg


Maze Solving with RL

State: 

Actions: 
      Left:   𝑥 ← 𝑥 − 1 
      Right: 𝑥 ← 𝑥 + 1 
      Up: 𝑦 ← 𝑦 − 1 
      Down: 𝑦 ← 𝑦 + 1

𝑥

𝑦

𝑠 = 𝑥, 𝑦 = (6,0)



RL Advantages

• No dataset needed
• data is generated by the environment

• Learning from feedback (reward)
• Efficient use of data

• Many fuzzing method do not use any feedback or use it insufficiently

19



Generalization Issue: A Different Maze

• An agent trained on one environment does not work on the other
environment

20

Maze A Maze B

Agent A
RL trained Not working on



Generalization Issue: Dynamic Changing Maze

• An agent trained on a static environment does not work on a dynamic
environment

21
21

Maze A Maze A’

Agent A
RL trained Not working on

Gradually
change one
wall at a time

Task 3134.013



RL Generalization Issues

• Difficult to adapt to different (dynamic) environment
• E.g., an adaptive attacker who changes attack strategy based on the detector,

making it difficult to detect

• Solution: multi-agent RL

• Difficult to adapt to different (static) environment
• E.g., a randomized cache whose randomization is different for different machine

instance

• Solution: Meta RL

22Task 3134.013



Multi-agent RL

• An RL that has more than one agent
• One agent is used for the original purpose (detection/defense)

• The other agent is used for modeling the adaptive behavior of the adversary

23

Agent 1

Environment

Action 𝑎

State 𝑠

Reward 𝑟

Agent 2



Meta RL

• Solving a class of problems rather than a single instance
• Examples

• E.g., solving any maze

• E.g., finding out eviction sequence of any mapping function

• Input: a meta parameter (may not be in the training set)

• Output: a policy corresponding to that parameter

• Using Meta RL, a super agent (policy generator) learns to
solve a class of problems
• In general, an algorithm solves a class of problems

• Thus, this super agent from Meta RL represents an algorithm
• E.g., an algorithm that given the description of the maze, generates a

policy that solves the maze

• E.g., an algorithm that given the mapping function of a cache, finds
eviction set for particular address

1. Meta-Reinforcement Learning of Structured Exploration Strategies, Gupta et al, NIPS, 2018. 
2. Reinforcement learning, fast and slow,Botvinick, 2018
3. https://www.uber.com/blog/poet-open-ended-deep-learning/

A class of problems in Meta RL3

Meta RL 2



RL Methods Summary
RL Method pros cons Microachitectural security

Use cases

Single-agent RL Simple
Quick converge

Instance specific, not 
generalizable
Cannot foresee unseen 
scenarios

Attack based on single set 
vulnerabilities

Multi-agent RL Good for adversarial scenarios
Robust against unseen scenarios
Generalization for dynamic 
scenarios

long training time detection training

Meta RL Generalization for multiple 
environment

Long training time Eviction set finding

25



Outline

• Microarchitectural attacks 

• RL methods

• Case studies
• AutoCAT: RL for cache timing attacks

• SpecRL: RL for speculative contract detection

• MACTA: multi-agent RL for cache timing attack detection

• RLdefender: RL-based cache partition for security

• AlphaEvict: Eviction set finding with RL

• Conclusions

26



Case 1: AutoCAT - RL for Attack on Non-Randomized Cache

• Agent: Attacker

• Environment: Cache

• Actions
– attacker makes an access

– attacker waits for victim access

– attacker guesses the secret

• Observation
– latency of attacker accesses

• Reward
– guess correct: positive reward

– guess wrong: negative reward

– each step: small negative reward

set

0
1
2

509
510
511

attacker fills 

the cache
victim reads 

an array

attacker reads 

its data again

Slow (miss)

Fast (hit)
Fast (hit)

Fast (hit)
Fast (hit)
Fast (hit)

AutoCAT: Reinforcement Learning for Automated Exploration of Cache-Timing Attacks, M. Luo, et al, HPCA, 2023



Case 2: SpecRL - Speculative Contract Violation Detection

28SpecRL: Reinforcement Learning for Speculative Execution Vulnerability Exploration, E. Lai, M. Luo, M. Tiwari,
manuscript in preparation.

• Agent: Attacker

• Environment: Processor

• Actions
– Adding one assembly instruction

• Observation
– Htraces (Hardware trace) of two inputs

– Ctraces (contract trace) of two inputs

• Reward
– 0, Htraces of two inputs are the same

– Positive, Htraces of two inputs are
different



Case 1 & 2: AutoCAT and SpecRL Results

AutoCAT can find high bandwidth 
cache timing channel attack – 
StealthyStreamline tested on 4 
different processors

29

SpecRL can detect Spectre-V0 
attack in a few training iterations 
on i7-6700



Case 3: MACTA- A Multi-agent RL for Detection of Cache 
Timing Attacks

• Approach: 
• Multi-agent reinforcement learning (RL) for 

automatically exploring cache-timing attacks 
and detection schemes together.

• Key Findings:
• Without any manual input from security 

experts, 
• the trained attacker is able to act more stealthily 

• the trained detector can generalize to unseen 
attacks 

• the trained detector is less exploitable to high-
bandwidth attacks.

30

Vulnerability analysis Propose defense

RL Environment

In simulation or 

real hardware

DNN Model

S
ta

te
 

Attacker 

Agent

DNN Model

S
ta

te
 

Detector 

Agent

MACTA: A multi-agent Reinforcement Learning Approach for Cache Timing Attacks and Detection, J. Cui, X. Yang. M. Luo, et. Al., ICLR 2023.



Case 3: MACTA Formulation

31

Detector 

Agent

Attacker Program

rewards:  Successful Attack without alarm:  Attacker receives reward
  Unsuccessful Attack:  Attacker receives penalty

rewards: Correct Alarm:   Detector receives reward
   False Alarm or False Negative:      Detector receives penalty

Attack Scenario

Victim Program
or

Benign Program 1

Benign Program 2

Benign Scenario

Cache

simulatora: If Detector alarms: 
Terminate the programs

o: Observe latency

a: Memory accesses by 
both programs

o: Observe memory accesses 
by both programs

• Agent 1: AutoCAT attacker

• Agent 2: RL detector

• Environment: Cache

• Actions: raise alarm

MACTA: A multi-agent Reinforcement Learning Approach for Cache Timing Attacks and Detection, J. Cui, X. Yang. M. Luo, et. Al., ICLR 2023.

• Reward
• Correct detect: positive reward
• False positive: low negative reward
• False negative: high penalty
• each step: small negative reward



Case 3: MACTA Results

• Without any manual input from security experts, 
• the trained MACTA detector can generalize to unseen attacks

32Task NNNN.nnn



Case 4: RL defender – Multi-agent RL for Cache Set 
Partitioning

• Cache set partition limits the cache 
locations attacker can use

• Reducing interference, making it 
difficult for an adaptive attacker to 
guess secret correctly

• May negatively impacts the cache 
performance (e.g. miss rate)

• We use RL to dynamically partition 
each cache set that
• Reduce attacker guess correct rate

• Improve cache miss rate

33

• Agent 1: AutoCAT attacker

• Agent 2: RL defender

• Environment: Cache

• Actions
• Lock specific lines in a cache set (the 

locked cache line cannot be used by a 
different domain)

• Reward
• guess correct: positive reward

• guess wrong: negative reward

• each step: small negative reward



Case 5: Meta RL for Eviction Set Finding

• Cache randomization makes it difficult to find 
eviction set for specific addresses

• “one agent does not work on another maze”

• We use Meta RL Techniques to find eviction 
sets

• Each mapping function is one RL instance

• Train one RL agent with changing RL mapping 
functions

34Eviction Set-Finding on Randomized Caches with Reinforcement Learning, M. Luo, M. Tiwari, SRC TECHCON 2024.

Mapping function

Cache Address Randomization



Case 5: Evaluation Example

• Cache setting
• A 4-set 2-way cache example
• Address used: 0-8
• Address 0-8 is randomly mapped to different cache locations
• Victim address is 0

• RL setting
• Evict victim address N times (N=1, 5)
• Episode length L (number of memory accesses) indicates the complexity

• Ideal case analysis
• N =1, no need to actually “figure out” the eviction set of 0, just occupancy 

channel style accessing all addresses, L= 8
• N=5, there is a need to reduce the number of steps to cause one eviction 

(figuring out a eviction set), L >= N * size(min_evset) + cost(evset_finding)
• Size(min_evset) = 2, N = 5

• L >= 2 *5 + cost(evset_finding) 

2 1

3 5

4 8

7 6

4-set 2-way cache 

0

address 0-8 randomly 
mapped to different set

Eviction Set-Finding on Randomized Caches with Reinforcement Learning, M. Luo, M. Tiwari, SRC TECHCON 2024.



Case 5: Evaluated Cases

Cache 
Configuration

Epochs 
Trained

Episode 
Length

Victim
Evicted

Eviction
Set size

Cache
ways

Steps
taken

2 set 2 way 52 41 yes 2 2 29

4 set 2 way 10 60.35 yes 2 2 48

2 set 4 way 114 38.82 yes 4 4 19

36

Meta RL can find eviction sets for any randomized mapping function in 
these scenarios!



Collaborators

• Mohit Tiwari, UT Austin

• Edward Suh, Nvidia / Cornell University

• Wenjie Xiong,  Virginia Tech

• Hsien Hsin Lee, Intel

• Yuandong Tian, Meta AI

• Amy Zhang, UT Austin

• Benjamin Lee, University of Pennsylvania

• Jiaxun Cui, UT Austin

• Xiaomeng Yang, Google

• Erfan Iravani,  Virginia Tech

• Evan Lai, UT Austin

• Mahir Kaya, UT Austin

37



Conclusion and Future Work

• Summary
• Microarchitectural security analysis is 

laborious and error-prone 

• We use reinforcement learning to address a 
variety of microarchitectural security 
problems

• Future Work
• Explainable reinforcement learning for 

interpretable results

38Task 3134.013

Agent

Environment

RL learning algorithms

Speculative 

execution contract 

environment 

C
a
c
h
e

Cache timing attack 

environment

Cache partition 

environment

C
a
c
h
e

Attack detection 

environment



Acknowledgement

• This work is partially funded by SRC Jump 2.0 ACE Center for Evolvable 
Computing under task 3134.013

39


	Slide 1: Reinforcement learning for microarchitectural security:  cache timing channel, speculative execution, and defense Mulong Luo and Mohit Tiwari The University of Texas at Austin mulong@utexas.edu
	Slide 2: Executive Summary
	Slide 3: Outline
	Slide 4: Microarchitectural Attacks
	Slide 5: Cache-Timing Attack
	Slide 6: Prime+Probe Attacks
	Slide 7: Flush+Reload Attacks
	Slide 8: Speculative Execution Attacks
	Slide 9: Secure Design Challenges
	Slide 10: Microarchitectural Defenses
	Slide 11: Detection
	Slide 12: Isolation
	Slide 13: Randomization
	Slide 14: Runtime Defense Challenges
	Slide 15: Outline
	Slide 16: Reinforcement Learning (RL)
	Slide 17: RL for Games
	Slide 18: Maze Solving with RL
	Slide 19: RL Advantages
	Slide 20: Generalization Issue: A Different Maze
	Slide 21: Generalization Issue: Dynamic Changing Maze
	Slide 22: RL Generalization Issues
	Slide 23: Multi-agent RL
	Slide 24: Meta RL
	Slide 25: RL Methods Summary
	Slide 26: Outline
	Slide 27: Case 1: AutoCAT - RL for Attack on Non-Randomized Cache
	Slide 28: Case 2: SpecRL - Speculative Contract Violation Detection
	Slide 29: Case 1 & 2: AutoCAT and SpecRL Results
	Slide 30: Case 3: MACTA- A Multi-agent RL for Detection of Cache Timing Attacks
	Slide 31: Case 3: MACTA Formulation
	Slide 32: Case 3: MACTA Results
	Slide 33: Case 4: RL defender – Multi-agent RL for Cache Set Partitioning
	Slide 34: Case 5: Meta RL for Eviction Set Finding
	Slide 35: Case 5: Evaluation Example
	Slide 36: Case 5: Evaluated Cases
	Slide 37: Collaborators
	Slide 38: Conclusion and Future Work
	Slide 39: Acknowledgement

